6,061 research outputs found

    Pressure-induced transformations in LiCl–H2O at 77 K

    Get PDF
    A systematic study of the properties of high-density amorphous ice (HDA) in the presence of increasing amounts of salt is missing, especially because it is challenging to avoid ice crystallization upon cooling the pressurized liquid. In order to be able to study HDA also in the presence of small amounts of salt, we have investigated the transformation behaviour of quenched aqueous LiCl solutions (mole fraction x 1 GPa. The observed densification is consistent with the idea that a freeze concentrated LiCl solution of x = 0.14 (R = 6) segregates, which transforms to the glassy state upon cooling, and that the densification is only due to the Ih → HDA transition. Also the XRD patterns and DSC scans are almost unaffected by the presence of the segregated glassy LiCl solution. Upon heating at ambient pressure HDA experiences the polyamorphic transition to low-density amorphous ice (LDA) at ∼120 K, even at x ∼ 0.10. Based on the latent heat evolved in the transition we suggest that almost all water in the sample transforms to an LDA-like state, even the water in the vicinity of the ions. The glassy LiCl solution acts as a spectator that does not shift the transformation temperature significantly and experiences a glass-to-liquid transition at ∼140 K prior to the crystallization to cubic ice. By contrast, at x > 0.12 the phenomenology completely changes and is now dominated by the salt. Hexagonal ice no longer forms upon quenching the LiCl solution, but instead LDA forms. A broad pressure-induced transformation at >0.6 GPa can be attributed to the densification of LDA, the glassy LiCl solution and/or glassy hydrates.Fil: Ruiz, G. N.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Innsbruck; AustriaFil: Bove, L. E.. Universite Pierre et Marie Curie; Francia. Ecole Polytechnique Federale de Lausanne; SuizaFil: Corti, Horacio Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Loerting, T.. Universidad de Innsbruck; Austri

    Photofrin II as an efficient radiosensitizing agent in an experimental tumor

    Get PDF
    Background and Objective: The use of ionizing irradiation as radiation therapy (RT) for tumor treatment represents a well-established method. The use of photodynamic therapy (PDT), especially with Photofrin II, for tumor treatment is also known. Chemical modifiers enhancing the action of radiation therapy are well known and widely used in medicine. None of these compounds, however, is a selective radiosensitizer. Materials and Methods: Several series of animal experiments were performed, The highly differentiated human bladder cancer cell line RT4 was implanted subcutaneously in nude mice. The mice were injected 10 mg/kg Photofrin II and irradiated with 5 Gy. Results: Photofrin II has proved to be a chemical modifier of ionizing irradiation, enhancing the tumor doubling time (tumor growth) from 6.2 to 10.9 days in the control group with the use of irradiation and injection of porphyrin. Conclusion: Photofrin II shows a high activity as radiosensitizer and, in the future, can be used as a selective radiosensitizer for tumor treatment with ionizing radiation

    Life cycle assessment (LCA) of an integrated biomass gasification combined cycle IBGCC with CO2 removal

    Get PDF
    Based on the results of previous studies, the efficiency of a Brayton/Hirn combined cycle fuelled with a clean syngas produced by means of biomass gasification and equipped with CO2 removal by chemical absorption reached 33.94%, considering also the separate CO2 compression process. The specific CO2 emission of the power plant was 178 kg/MW h. In comparison with values previously found for an integrated coal gasification combined cycle (ICGCC) with upstream CO2 chemical absorption (38–39% efficiency, 130 kg/MW h specific CO2 emissions), this configuration seems to be attractive because of the possibility of operating with a simplified scheme and because of the possibility of using biomass in a more efficient way with respect to conventional systems. In this paper, a life cycle assessment (LCA) was conducted with presenting the results on the basis of the Eco-Indicator 95 impact assessment methodology. Further, a comparison with the results previously obtained for the LCA of the ICGCC was performed in order to highlight the environmental impact of biomass production with fossil fuels utilisation. The LCA shows the important environmental advantages of biomass utilisation in terms of reduction of both greenhouse gas emissions and natural resource depletion, although an improved impact assessment methodology may better highlight the advantages due to the biomass utilisation

    Two new pulsating low-mass pre-white dwarfs or SX Phenix stars?*

    Get PDF
    Context. The discovery of pulsations in low-mass stars opens an opportunity for probing their interiors and to determine their evolution, by employing the tools of asteroseismology. Aims. We aim to analyze high-speed photometry of SDSSJ145847.02++070754.46 and SDSSJ173001.94++070600.25 and discover brightness variabilities. In order to locate these stars in the TeffloggT_{\rm eff} - \log g diagram we fit optical spectra (SDSS) with synthetic non-magnetic spectra derived from model atmospheres. Methods. To carry out this study, we used the photometric data obtained by us for these stars with the 2.15m telescope at CASLEO, Argentina. We analyzed their light curves and we apply the Discrete Fourier Transform to determine the pulsation frequencies. Finally, we compare both stars in the TeffloggT_{\rm eff} - \log g diagram, with known two pre-white dwarfs, seven pulsating pre-ELM white dwarf stars, δ\delta Scuti and SX Phe stars. Results. We report the discovery of pulsations in SDSSJ145847.02++070754.46 and SDSSJ173001.94++070600.25. We determine their effective temperature and surface gravity to be TeffT_{\rm eff} = 7 972 ±\pm 200 K, logg\log g = 4.25 ±\pm 0.5 and TeffT_{\rm eff} = 7 925 ±\pm 200 K, logg\log g = 4.25 ±\pm 0.5, respectively. With these parameters these new pulsating low-mass stars can be identified with either ELM white dwarfs (with ~ 0.17 Mo) or more massive SX Phe stars. We identified pulsation periods of 3 278.7 and 1 633.9 s for SDSSJ145847.02++070754.46 and a pulsation period of 3 367.1 s for SDSSJ173001.94++070600.25. These two new objects together with those of Maxted et al. (2013, 2014) indicate the possible existence of a new instability domain towards the late stages of evolution of low-mass white dwarf stars, although their identification with SX Phe stars cannot be discarded.Comment: 5 pages, 5 figures, 1 table, accepted for publication in A&A

    Circular Coil for EV Wireless Charging Design and Optimization Considering Ferrite Saturation

    Get PDF

    The embedded clusters DBS 77, 78, 102, and 160-161 and their link with the interstellar medium

    Get PDF
    Aims. We report a study of the global properties of some embedded clusters placed in the fourth quadrant of the Milky Way to clarify some issues related with their location into the Galaxy and their stellar formation processes. Methods. We performed BVI photometric observations in the region of DBS 77, 78, 102, 160, and 161 clusters and infrared spectroscopy in DBS 77 region. They were complemented with JHK data from VVV survey combined with 2MASS catalogue, and used mid-infrared information from GLIMPSE catalogue. We also searched for HI data from SGPS and PMN radio surveys, and previous spectroscopic stellar classification. The spectroscopic and photometric information allowed us to estimate the spectral classification of the brightest stars of each studied region. On the other hand, we used the radio data to investigate the interstellar material parameters and the continuum sources probably associated with the respective stellar components. Results. We estimated the basic physical parameters of the clusters (reddening, distance, age, and initial mass function). We searched for HII regions located near to the studied clusters and we analyzed the possible link between them. In the particular case of DBS 160-161 clusters, we identified the HI bubble B332.5-0.1-42 located around them. We found that the mechanical energy injected to the interstellar medium by the more massive stars of this couple of clusters was enough to generate the bubble.Comment: 15 pages, 14 figures, 6 tables, accepted for publication in A&

    Integrating X-ray computed tomography with chemical imaging to quantify mineral re-crystallization from granulite to eclogite metamorphism in the Western Italian Alps (Sesia-Lanzo Zone)

    Get PDF
    Metamorphic transformations and fabric evolution are the consequence of thermo-dynamic processes, lasting from thousands to millions of years. Relative mineral percentages, their grain size distribution, grain orientation, and grain boundary geometries are first-order parameters for dynamic modeling of metamorphic processes. To quantify these parameters, we propose a multidisciplinary approach integrating X-ray computed microtomography (\u3bc-CT) with X-ray chemical mapping obtained from an Electron MicroProbe Analyzer (EMPA). We used a metapelitic granulite sample collected from the Alpine HP-LT metamorphic rocks of the Mt. Mucrone (Eclogitic Micaschists Complex, Sesia-Lanzo Zone, Western Alps, Italy). The heterogeneous Alpine deformation and metamorphism allowed the preservation of pre-alpine structural and mineralogical features developed under granulite-facies conditions. The inferred granulitic mineral association is Grt + Bt + Sil + Pl + Qtz \ub1 Ilm \ub1 Kfs \ub1 Wm. The subsequent pervasive static eclogite-facies re-equilibration occurred during the alpine evolution. The inferred alpine mineral association is Wm + Omp \ub1 Ky + Qtz + Grt though local differences may occur, strongly controlled by chemistry of microdomains. X-ray \u3bc-CT data extracted from centimeter-sized samples have been analyzed to quantify the volumetric percentage and shape preferred orientation (SPO) for each mineral phase. By combining tomographic phase separation with chemical variation and microstructures (i.e., different grain-size classes for the same phase and morphology of different pre-alpine microdomains) the pre-alpine mineralogical phases from the alpine overprint have been distinguished and quantified. Moreover, the sample preserves 100% of the pre-alpine granulite fabric, which surprisingly corresponds to less than 22% of the corresponding pre-alpine metamorphic assemblages, while the alpine eclogitic static assemblage corresponds to 78% though no new fabric is developed. This contribution demonstrates that the combined use of EMPA X-ray chemical mapping with the X-ray \u3bc-CT shape analysis permits a dynamic approach to constrain the chemistry of the mineral phases linked to the development of metamorphic-related static and dynamic fabrics

    EXP-Crowd: A Gamified Crowdsourcing Framework for Explainability

    Get PDF
    The spread of AI and black-box machine learning models made it necessary to explain their behavior. Consequently, the research field of Explainable AI was born. The main objective of an Explainable AI system is to be understood by a human as the final beneficiary of the model. In our research, we frame the explainability problem from the crowds point of view and engage both users and AI researchers through a gamified crowdsourcing framework. We research whether it's possible to improve the crowds understanding of black-box models and the quality of the crowdsourced content by engaging users in a set of gamified activities through a gamified crowdsourcing framework named EXP-Crowd. While users engage in such activities, AI researchers organize and share AI- and explainability-related knowledge to educate users. We present the preliminary design of a game with a purpose (G.W.A.P.) to collect features describing real-world entities which can be used for explainability purposes. Future works will concretise and improve the current design of the framework to cover specific explainability-related needs

    iPSCs-Based Neural 3D Systems: A Multidimensional Approach for Disease Modeling and Drug Discovery

    Get PDF
    Induced pluripotent stem cells (iPSCs)-based two-dimensional (2D) protocols have offered invaluable insights into the pathophysiology of neurological diseases. However, these systems are unable to reproduce complex cytoarchitectural features, cell-cell and tissue-tissue interactions like their in vivo counterpart. Three-dimensional (3D)-based culture protocols, though in their infancy, have offered new insights into modeling human diseases. Human neural organoids try to recapitulate the cellular diversity of complex tissues and can be generated from iPSCs to model the pathophysiology of a wide spectrum of pathologies. The engraftment of iPSCs into mice models and the improvement of differentiation protocols towards 3D cultures has enabled the generation of more complex multicellular systems. Consequently, models of neuropsychiatric disorders, infectious diseases, brain cancer and cerebral hypoxic injury can now be investigated from new perspectives. In this review, we consider the advancements made in modeling neuropsychiatric and neurological diseases with iPSC-derived organoids and their potential use to develop new drugs
    corecore